目で見る製薬産業

世界売上高上位医薬品の創出企業の国籍

-2023年の動向-

医薬産業政策研究所 主任研究員 森本 潔 医薬産業政策研究所 主任研究員 吉野九美

要約

- ●2023年の医薬品世界売上高上位100品目(上位品 目)の企業国籍や日本由来品目の動向をアップ デートすることに加えて、2023年上位品目の売 上の特徴について解析した。
- ●上位品目数動向
 - ▶ 創出企業国籍別順位上位6か国で9割超を占 め、上からアメリカ(48)、スイス(10)、イ ギリス、ドイツ、デンマーク(各9)、日本 (8) の順であった (括弧内は品目数)。
 - ▶日本は前年からランクは変わらないものの、 今年度は前年と比較して1品目増え8品目で あった。日本のランクイン数が増えるのは 2016年以来であった。
 - ▶新規ランクイン品目(再ランクインを含む) は11品目あったが、そのうち日本の新規ラン クイン品目数3品目で、2023年度の新規ラン クイン数としては国籍別で最多であった。
- ●上位品目売上動向
 - ▶上位品目の売上に占める国籍別割合で、日本 は4.8%と、品目数の占める割合8%(=8品 目)を下回っていた。
 - ▶一方上位品目に占める割合は、ドイツは16.4 %、デンマークは11.8%で、品目数に占める 割合より高かった。

- ▶ドイツ、デンマークは、ATC分類A (消化管 と代謝作用)に占める売上比率が大きい一方、 日本、スイス、イギリスは、ゼロであった。
- ▶上位品目の売上上昇の著しいA分類品目の有 無が売上比率に影響していた。

1. はじめに

医薬産業政策研究所では、医薬品世界売上高上 位100品目(以下、上位品目)について、各品目の 基本特許1)を調査し、特許を受けた発明が行われ た時点において、権利を有していた企業を調査・ 報告している2)。今回、2023年の上位品目の企業 国籍や日本由来品目の動向をアップデートするこ とに加えて、2023年品目売上の特徴について解析 した。

2. 調査方法

上位品目については、IQVIA World Review Analyst 2023に掲載されたリストから、従来同様 後発品・バイオシミラー・診断薬・政府一括購入 など一般に流通していないワクチン・治療薬を除 いた上位100品目を選抜し、今回の調査対象とし $(t^{3})_{0}$

各品目の基本特許はクラリベイト・アナリティ クス社の Cortellis Competitive Intelligence を用

¹⁾ 本調査における基本特許とは、物質特許や用途特許等、各品目の鍵となっている特許を示す

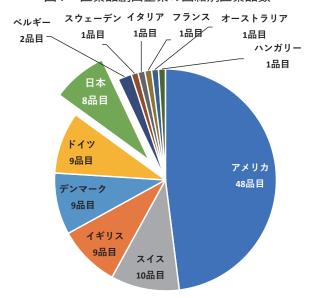
²⁾ 医薬産業政策研究所「国·企業国籍からみた医薬品の創出と権利帰属」政策研ニュースNo.42 (2014年7月)、以降、政 策研ニュース No.47 (2016年3月)、No.50 (2017年3月)、No.52 (2017年11月)、No.55 (2018年11月)、No.58 (2019年 11月)、No.61 (2020年11月)、No.64 (2021年11月)、No.67 (2022年11月)、No.71 (2024年3月) にて報告

³⁾ Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023をもとに医薬産業政策研究所にて作成(無断 転載禁止)

い、各品目の"Patent"に収録された特許のうち、 "Product"に分類された特許をもとに特定した。 これまで報告してきた分析手法2)と同様、以下の ように国籍を分類して解析した。また Evaluate Pharma® (2024年11月時点) を用いて情報を補完 した。

- ●医薬品創出企業の国籍:各品目の基本特許に記 載されている出願人/譲受人の国籍としたが、 出願時点に海外親会社がある場合には親会社の 国籍とした。これは鍵となる物質・用途・技術 などの要素を発明する過程において人材や資金 といったリソースなど親会社の寄与があると考 えたためである。主な解析は本分類で実施した。
- ●出願人国籍:各品目の基本特許に記載されてい る出願人/譲受人の国籍をそのまま採用した。 実際に鍵となる要素を見出した企業の国籍を調 べることは、実際の「創薬の場」がいずれの国 にあるかを知る上で一助になると考えられる。 本集計は図2、図3で使用した。

ATC code 分類はIQVIA 社データに基づいて分 類した。有効成分の技術分類は化学合成医薬品と バイオ医薬品に分類した3)。化学合成医薬品とは、 段階的な化学合成によって製造される医薬品(低 分子)を指す。バイオ医薬品は日本における承認 情報において抗体等一般名に遺伝子組換え (Genetical Recombination) とある品目、また、血 液製剤やワクチンなど添付文書に特定生物由来製 品、生物由来製品と記載されている品目とした4)。 日本で承認されていない品目は FDA の承認情報 や各社 HP 等で個別に調査した5)。


3. 結果

3-1. 上位品目数動向

3-1-1. 医薬品創出企業の国籍別医薬品数

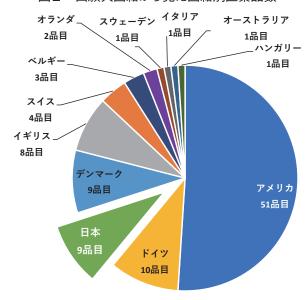

上位品目について、各医薬品における基本特許 を調査し、出願時の企業国籍を医薬品創出企業の 国籍と定義し、国籍別の医薬品数を円グラフで示 した(図1)。今回2023年の調査の結果、1番手は

図1 医薬品創出企業の国籍別医薬品数

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11 月時点)、Clarivate Cortellis Competitive Intelligence をもとに医薬産業政策研究所にて作成 (無断 転載禁止)。

図2 出願人国籍から見た国籍別医薬品数

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11 月時点)、Clarivate Cortellis Competitive Intelligence をもとに医薬産業政策研究所にて作成 (無断 転載禁止)。

⁴⁾ PMDA HP: https://www.pmda.go.jp/about-pmda/outline/0001.html

⁵⁾ FDA HP: https://www.fda.gov

図3 売上上位品目新薬の出願人国籍

注1: 創出企業としての担い手の分類が複数にまたがって いるときは均等に割り付けた。たとえばベンチャー 1社とアカデミア1機関の共同出願であればベン チャー0.5、アカデミア0.5とカウントした。

注2: Evaluate Pharma において "Biotechnology" 企業 に分類される企業のうち、特許優先日の年度売上高 が5億ドル未満かつ企業設立日から特許優先日ま での期間が20年未満の企業を「ベンチャー」とし

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analvst Data Period 2008-2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma (2024) 年11月時点)をもとに医薬産業政策研究所にて作成 (無断転載禁止)。

アメリカ(48品目)、2番手はスイス(10品目)、 3番手はイギリス、デンマーク、ドイツ(ともに 9品目)、6番手は日本(8品目)、7番手はベル ギーで2品目、以下1か国1品目ずつ(計5品目) であった。日本は昨年から1品目増であった。2022 年から2023年で全体の入れかえ品目総数は11品で あった。

3-1-2. 出願人国籍から見た国籍別医薬品数

次に、実際の「創薬の場」を反映している出願 人国籍別の品目数を図2に示した。本集計におい てもアメリカが最も多く51品目であった。2番手 はドイツで10品目であった。3番手は日本、デン マークで各9品目であった。スイスは親会社企業 国籍から見た調査では10品目であったが、本出願 人国籍から見た調査では4品目であり、この傾向 は4年前の2019年調査から変わらない。スイスの 場合、国外にある傘下企業が特許の『鍵』となる

要素の発明を行っていることが伺え、上位品目を 創出するポテンシャルを持った企業を早期に傘下 に入れたことによるものと考えられる。

3-1-3. ベンチャー企業由来品の占める割合

政策研ニュースNo67で、新薬創出の担い手を4 つのカテゴリー別(製薬企業、ベンチャー、アカ デミア、その他) に分類し、上位品目の担い手の 推移を分析した6)が、今回はそのアップデートを 行った(図3)。担い手の定義はニュース No67に 従った⁶⁾。ベンチャーの定義は、Evaluate Pharma の "Biotechnology (バイオテック)" のうち、上 位品基本特許優先日の年度売上高が5億ドル未満 かつ企業設立日から特許優先日までの期間が20年 未満の企業とし、実際の「創薬の場」を反映して いる出願人創出機関で集計した。

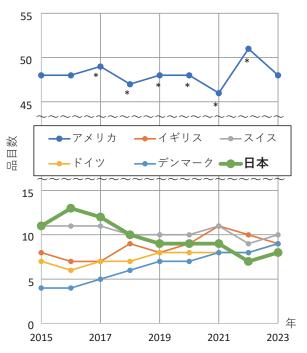
2008年の上位品目のうち、特許出願時の企業分 類が、製薬企業83品目、ベンチャー11.5品目、ア カデミア4.5品目、その他1品目だったものが、経 年とともに製薬企業の割合が減少し、ベンチャー の割合が増加したが、2014年以降は大きな変化は 見られず割合が一定しており、2023年は製薬企業 77品目、ベンチャー19.5品目、アカデミア3.5品目 となり、製薬企業の割合は全体の3/4以上、ベンチ ャーの割合は2割を切った。

EBP由来品の医薬品開発が急激に伸び始めたの が2015-16年以降であり、承認日からランクイン まで平均5年弱要する7)ので、2023年時点でベン チャー由来品は製薬企業由来品に比べて増加する ことが予想されたが、売上上位品目はそれほど増 えていない。前回の調査6)で、売上高上位品目の 担い手としての「ベンチャー」起源医薬品割合と、 世界の医薬品開発の担い手としての Emerging Biopharma (EBP) 比率に相違があることがわか っていたが、今回もその傾向は続いている。

2. 調査方法にも記載したように、各品目の基 本特許は、出願された時点でその当該特許に記載

⁶⁾ 医薬産業政策研究所「世界売上高上位医薬品の創出企業の国籍-2021年の動向-」政策研ニュースNo.67 (2022年11月)

⁷⁾ 医薬産業政策研究所「世界売上高上位医薬品の創出企業国籍調査を振り返る-品目数の動的推移や創薬の担い手の観点 から-」政策研ニュース No.64 (2021年11月)


されている機関であり、その後の開発や販売を請 け負った機関ではない。ベンチャー企業は、その 成り立ちから独自の強みを生かしたかたちでの創 薬を志しており、ライセンスやMAなどにより薬 を世に出すことが第一優先であるという側面があ るのかもしれない。今後もうしばらく推移を見守 る必要があろう。

3-1-4. 医薬品創出企業の国籍別医薬品数年次推移

本章以降では再び3-1-1同様の基準、すなわ ち、各医薬品における基本特許を調査し、出願時 の企業国籍を医薬品創出企業の国籍(親会社の国 籍)と定義したうえで解析を行った。

今回の調査でも2003年以降の調査結果同様、ア メリカが最大の医薬品創出国であった。前年調査 で3番手のスイスが今回1増で単独の2番手とな った一方、前回2番手のイギリスが1減となり、 今回それぞれ1増ずつのドイツおよびデンマーク とならんで3位タイとなった。日本も今回1増で はあるが、ドイツ、デンマークともに増えたので、 順位としては6位のままであった(図4、表1)。 ドイツ、デンマークは、徐々に上位ランクイン数

図4 医薬品創出企業の国籍別医薬品数年次推移 (上位6か国)

*特許情報見直しにより修正。

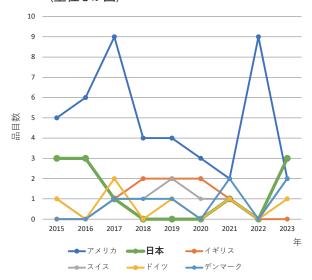
出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst Data Period 2015-2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024) 年11月時点)、Clarivate Cortellis Competitive Intelligenceをもとに医薬産業政策研究所にて作成(無断 転載禁止)。

表 1 医薬品創出企業の国籍別医薬品数年次推移

企業国籍	年											
止木凹箱	2003	2008	2013	2015	2016	2017	2018	2019	2020	2021	2022	2023
アメリカ	40	44	47	48	48	49*	47*	48*	48*	46*	51*	48
スイス	10	12	15	11	11	11	10	10	10	11	9	10
イギリス	14	9	8	8	7	7	9	8	9	11	10	9
ドイツ	4	6	7	7	6	7	7	8	8	8	8	9
デンマーク	4	2	4	4	4	5	6	7	7	8	8	9
日本	12	13	8	11	13	12	10	9	9	9	7	8
ベルギー	1	1	2	2	2	2*	2*	2*	2*	2*	2*	2
フランス	5	4	2	3	3	3	3	3	2	2	2	1
スウェーデン	6	6	2	2	2	2	2	2	2	1	1	1
イタリア	1	0	1	2	2	0	1	1	1	1	1	1
ハンガリー	0	0	0	0	0	0	0	0	0	1	1	1
オーストラリア	0	1	1	0	0	0	1	1	1	0	0	1
イスラエル	0	1	2	1	1	1	1	1	1	0	0	0
ルクセンブルク	1	1	1	1	1	1	1	0	0	0	0	0
カナダ	1	0	0	0	0	0	0	0	0	0	0	0
ユーゴスラビア	1	0	0	0	0	0	0	0	0	0	0	0

*特許情報見直しにより修正。

出所: Copyright® 2025 IQVIA. IQVIA World Review Analyst Data Period 2003-2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11月時点)、Clarivate Cortellis Competitive Intelligence をもとに医薬産業政 策研究所にて作成 (無断転載禁止)。


を増やしており、コンスタントに上位品目を創出 しているといえる。

3-1-5. 上位品目の新規ランクイン品目の年次推移

2023年の新規ランクイン数(再ランクインも含 む) は11品目で、2022年の9品目から2品目増加 した。2015-2023年の新規ランクイン数は年平均 で10.6品目であったことから2023年の新規ランク イン数は平年並みであったといえる。毎年10品目 前後の入れ替えはあるものの、今年が際立って新 規ランクイン数が多かったということはなかっ た。2023年の創出国籍上位6か国の新規ランクイ ン品目数は、日本がトップの3品目、続いてアメ リカ、デンマーク、スイスが各2品目ずつ、ドイ ツの1品目と続いた。イギリスからの新規ランク インはなかった(図5)。

次に日本品目について、2015年から23年まで経 時的に、順位、品目数、新規ランクイン数、ラン

上位品目の新規ランクイン品目の年次推移 (上位6か国)

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst Data Period 2015-2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024) 年11月時点)、Clarivate Cortellis Competitive Intelligenceをもとに医薬産業政策研究所にて作成(無断 転載禁止)。

表 2 日本由来医薬品数年次推移

年	2015	2016	2017	2018	2019	2020	2021	2022	2023
順位	2T	2	2	2T	3	3T	4	6	6
品目数	11	13	12	10	9	9	9	7	8
新規 ランクイン数	3	3	1	0	0	0	1	0	3
ランクアウト数	0	1	2	2	1	0	1	2	2
差し引き	+3	+2	-1	-2	-1	0	0	-2	+1

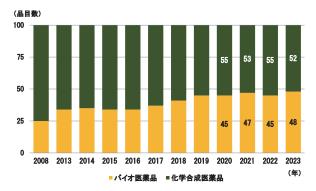
注:順位 T はタイ (同順位が複数)を表す。

出所: Copyright® 2025 IQVIA. IQVIA World Review Analyst Data Period 2014-2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11月時点)、Clarivate Cortellis Competitive Intelligence をもとに医薬産業政策研究所にて作成(無 断転載禁止)。

クアウト数、その差し引きを表にまとめた(表2)。 その結果、2022年までは断続的に順位と品目数が 低下し、上昇することはなかった。新規ランクイ ン品目があったのは2021年以来であったが、3品 目同時ランクインは2016年以来であった。新規ラ ンクイン数からその年のランクアウト数を引いた 差し引きにおいて、2017-2022年でプラスになる ことはなかったが、2023年は2016年以来7年ぶり に差し引きがプラスとなったことで、品目数がプ ラスに転じた。

3-1-6. 技術分類毎の国籍別医薬品数

上位品目の有効成分の技術分類(化学合成医薬 品とバイオ医薬品)では、化学合成医薬品が52品 目、バイオ医薬品が48品目となっており8)、前回 の調査 (それぞれ55品目、45品目)⁹⁾ よりバイオ医 薬品が3品目増加した。バイオ医薬品は2008年に 統計を取り始めてから最多となった100(図6)。


国籍別医薬品数は、化学合成品では1番手アメ リカ30品目、2番手ドイツ6品目、3番手は日本 とイギリスで5品目であった(図7)。バイオ医薬 品は、1番手アメリカ18品目、2番手デンマーク 9品目、3番手スイス8品目であった(図8)。日 本は前年からバイオ医薬品数が1増90であった。 技術分類は企業国籍によってその内容が大きく異 なっており、アメリカ、イギリス、日本は化学合

⁸⁾ 核酸・CART・細胞治療は上位品目にランクインしていない

⁹⁾ 医薬産業政策研究所「世界売上高上位医薬品の創出企業の国籍-2022年の動向-」政策研ニュースNo.71 (2024年3月)

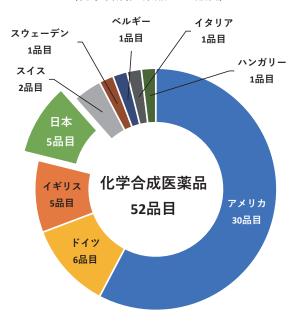
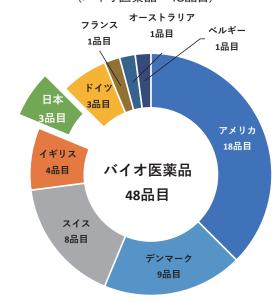

¹⁰⁾ 医薬産業政策研究所「世界売上高上位医薬品の創出企業の国籍-2020年の動向-」政策研ニュースNo.64 (2021年11月)

図6 上位品目の技術分類別推移

出所: Copyright® 2025 IQVIA. IQVIA World Review Analyst, Data Period 2008-2023, Evaluate Pharma® (2024年11月時点)をもとに医薬産業政策研究所に て作成 (無断転載禁止)。

医薬品創出企業の国籍別医薬品数 図7 (化学合成医薬品:52品目)


出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11 月時点)、Clarivate Cortellis Competitive Intelligence をもとに医薬産業政策研究所にて作成 (無断 転載禁止)。

成医薬品が優位であった一方、スイス、デンマー クはバイオ医薬品が優位であった。

3-1-7. ATC 薬効分類

上位品目の薬効分類 (ATC 1st level) をみると、 抗悪性腫瘍薬・免疫調節剤(L)が前年より1品 目減少し34品目となったが、依然として最も多か

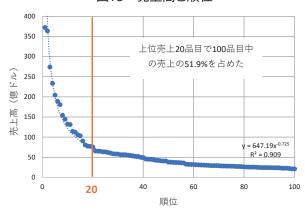
図8 医薬品創出企業の国籍別医薬品数 (バイオ医薬品:48品目)

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11 月時点)、Clarivate Cortellis Competitive Intelligence をもとに医薬産業政策研究所にて作成 (無断 転載禁止)。

図9 上位品目の薬効分類(品目数)

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11 月時点)をもとに医薬産業政策研究所にて作成 (無 断転載禁止)。

った。続いて消化器官用剤及び代謝性医薬品(A) が19品目で前年より1品目増加、一般的全身用抗 感染剤(J)が13品目(前年より2品目増加)、呼 吸器系(R)が10品目(前年と同じ)と、中枢神 経系用剤(N)が8品目(前年より1品目低下) と続いた(図9)。

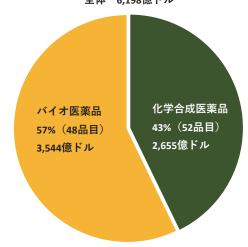

3-2. 上位品目売上動向

3-2-1. 上位品目の概要

IQVIA World Review Analyst 2023 3) にょる 2023年医薬品市場は1兆5.996億ドルで、前年9)か ら8.1%増加した。上位100品目の売上高合計は 6.198億ドルであり、全体に占める割合は約39%で あった。世界売上第100位品の売上高は21.1億ドル で前年比5.9%増であった。さらに上位売上20品目 で100品目中の売上の51.9%を占めた。売上高は上 位20位以上が急激に増加していた(図10)。

近似式は $y = 647.19 x^{-0.725} (R^2 = 0.909)$ となり、 売上の対数値とそのランクの対数値は、直線的な 負の関係にあり、明確に Power law (冪乗則) が 成立していた。推計結果によると、売上ランクが 1位から2位、2位から4位、4位から8位に低 下すると、それぞれ売上額は60%に低下し、1位 と比較して8位は約20%の大きさに売上は大幅に 低下する関係が成立していた。

図10 売上高と順位

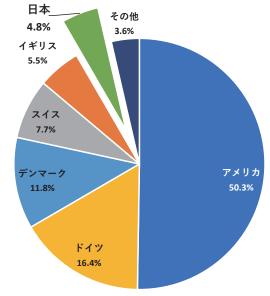


出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligenceをもとに医薬産業政策研究所に て作成 (無断転載禁止)。

3-2-2. 技術分類ごとの売上

上位品目の有効成分の技術分類(化学合成医薬 品とバイオ医薬品) 別売上高は、バイオ医薬品は 3.544億ドルで上位品の57%を占め(図11)、前年 より2ポイント上昇した。2019年の段階でバイオ 医薬品が化学合成医薬品の売上高を上回り100、そ の後、売上高比率は上昇し続けている。

図11 技術分類ごとの売上高 全体 6,198億ドル


注:%は上位品目売上高に占める割合。

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, Evaluate Pharma® (2024年 11月時点)をもとに医薬産業政策研究所にて作成(無 断転載禁止)。

3-2-3. 上位品目の世界売上高合計に占める国籍 別割合

上位品目の世界売上高合計に占める国籍別割合 を図12に示す。上位品目の売上高においてアメリ

図12 上位品目の世界売上高に占める国籍別割合

注:%は上位品目売上高に占める割合。

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11 月時点)、Clarivate Cortellis Competitive Intelligence をもとに医薬産業政策研究所にて作成 (無断 転載禁止)。

カが50.3%を占め前年比約2ポイント減であっ た。次にドイツ(16.4%)、デンマーク(11.8%)、 スイス (7.7%)、イギリス (5.5%) と続き、日本 は4.8%であった。ドイツ、デンマークは、ランク イン品目数がそれぞれ9品目ずつと、スイス(10 品目)、イギリス(9品目)、日本(8品目)と比 較して、大差なかったにもかかわらず、上位品目 の国籍別売上高においては、その占める割合が相 対的に高くなっている。日本は8品目で5%であ った。先に述べたように、上位売上20品目で100品 目中の売上の51.6%を占めるが、ドイツは上位20 位内に5品目、デンマークは2品目ランクインし たことがその要因であろう。

3-2-4. ATC 薬効分類

上位品目の薬効分類別の売上高において、抗悪 性腫瘍薬·免疫調節剤(L)が2,336億ドルと最も 多く、前年よりも約266億ドル増加し、次が消化管 と代謝作用(A)で1,621億ドルであった(図13)。

薬効分類別の売上高の2015年から2023年までの 年次推移を追った。消化管と代謝作用(A)およ び抗悪性腫瘍薬と免疫調節薬(L)の売上は、2015 年はそれぞれ500億ドルおよび895億ドルだったの が、2023年はそれぞれ1.621億ドルおよび2.336億ド ルとなり、売上高において高い成長を示した。

各年の売上高に占める比率は、2015年から2023 年まで8年連続でL分類がトップであり、2023年 の全売上高に占める割合は37.7%であった。ただ しその比率は2021年の39.2%を境に低下してい た。その一方A分類は、2017年の17.9%から毎年 上昇を続けた。2015年が16.6%で J 領域(全身性 抗感染薬)より低く、2016年には15.7%と約1ポ イント低下したが、それ以降は右肩上がりに上昇 を続けた。とくに2022年から2023年にかけては3.3 ポイントと大幅増で、全売上の26.2%を占めるに 至った(図14)。

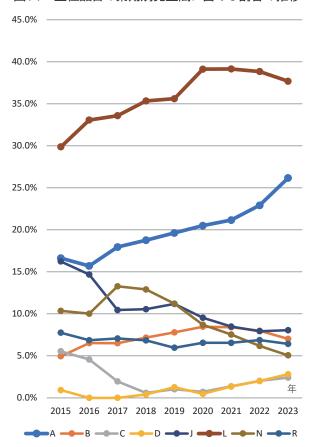

2015年の売上は、2015年から2023年の8年間に おける各領域の年平均成長率(CAGR)では高い 順にD分類(皮膚科用薬、25.9%)、A分類(15.9) %)、B分類(血液と造血器官、14.4%)、L分類 (12.7%) となっており、これらの分類で全成長率

図13 上位品目の薬効分類(売上高)

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11 月時点)をもとに医薬産業政策研究所にて作成(無 断転載禁止)。

図14 上位品目の薬効別売上高に占める割合の推移

注:A 消化管と代謝作用、B 血液と造血器官、C 循環器 系、D 皮膚科用薬、J 全身用抗感染薬、L 抗悪性腫瘍 薬と免疫調節薬、N 神経系、R 呼吸器系。

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2015-2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024) 年11月時点)をもとに医薬産業政策研究所にて作成 (無断転載禁止)。

表 3 売上上位品領域別詳細

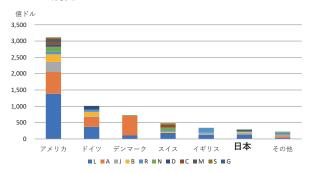
	CAGR (2015 – 2023)	2023年売上の 高い疾患	MOA
D 皮膚科用薬	25.9%	乾癬	抗 IL-23関連
A 消化管と代謝作用	15.9%	肥満、ダイア ベティス	後述
B 血液と造血器官	14.4%	血栓	DOAC
L 抗悪性腫瘍薬と 免疫調節薬	12.7%	1. 免疫調節薬2. 抗悪性腫瘍薬	免疫調節薬では 抗サイトカイン等
全体	9.5%		

注: DOAC: direct oral anticoagulant

出所: Copyright® 2025 IQVIA. IQVIA World Review Analyst Data Period 2015-2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11月時点)をもとに医薬産 業政策研究所にて作成 (無断転載禁止)。

(9.5%) を上回っていた。2023年での売上上位品 の各薬効分類における主な対象疾患は、D分類で は乾癬、A分類では肥満とダイアベティス、B分 類では血栓症であった。L分類では免疫調節薬の 売上が最も多く、抗悪性腫瘍薬の売上を上回って いた (表3)。

3-2-5. 国籍別 ATC 薬効分類別医薬品売上


3-2-2. で述べたように、ランクイン数では近 いスイス (ランクイン数10)、ドイツ (同9)、デ ンマーク (同9)、イギリス (同9)、日本 (同8) が、売上比率では、ドイツ (16.4%)、デンマーク (11.8%) が大きく、スイス (7.7%)、イギリス (5.5 %)、日本(4.8%)が小さくなっている。

この要因がどこにあるのかを解析するために、 上位品目に対する薬効領域別売上を解析した。そ の結果、ドイツはLおよびA分類の売上が多く、 それ以外の薬効分類品目でもある程度売上があっ た (図15)。

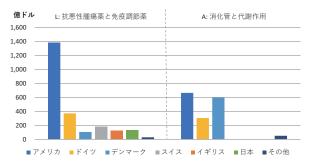
ドイツのL分類での売上比率は36.7%であっ た。またA分類における売上比率は30.1%で、全 体の売上に対するA分類に占める割合である 26.2%より高かった。デンマークでは、A分類の 売上比率が82.1%と非常に高かった、一方L分類 は14.5%と上位6か国で最低であった(表4)。

次にLおよびA分類について国別の売上を比較 した。図16に ATC 分類別の売上を示した。売上 の多寡はあるものの、上位6か国ではいずれの国

図15 上位品目の世界売上高に占める国籍別薬効 別売上

注:A 消化管と代謝作用、B 血液と造血器官、C 循環器 系、D 皮膚科用薬、G 泌尿生殖器系と性ホルモン、J 全 身用抗感染薬、L 抗悪性腫瘍薬と免疫調節薬、M 筋 骨格系、N 神経系、R 呼吸器系、S 感覚器。

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11 月時点)、Clarivate Cortellis Competitive Intelligence をもとに医薬産業政策研究所にて作成 (無断 転載禁止)。


上位品目の世界売上高に占める国籍別薬効 表 4 別売上比率

	アメリカ	ドイツ	デン マーク	スイス	イギ リス	日本	その他	合計
A分類	21.4%	30.1%	82.1%	0.0%	0.0%	0.0%	22.9%	26.2%
L分類	44.5%	36.7%	14.5%	38.0%	36.8%	45.1%	13.4%	37.7%

注:A消化管と代謝作用、L抗悪性腫瘍薬と免疫調節薬。

出所: Copyright[©] 2025 IQVIA, IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11月時点)、Clarivate Cortellis Competitive Intelligence をもとに医薬産業政策研究所にて作 成 (無断転載禁止)。

図16 上位品目の世界売上高に占める薬効別国籍 別売上

出所: Copyright[©] 2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11 月時点)、Clarivate Cortellis Competitive Intelligence をもとに医薬産業政策研究所にて作成 (無断 転載禁止)。

表5 消化管と代謝作用(A)における売上上位 品 MOA

MOA	化合物数	売上(億ドル)	
GLP-1 AGONIST	4	783	
SGLT2 INHIBITOR	2	304	
HUMAN INSULIN ANALOGUES	5	275	
DPP-IV INHIBITOR	3	119	
その他	4	141	
総計	18	1621	

出所: Copyright[©]2025 IQVIA. IQVIA World Review Analyst, Data Period 2023, IQVIA Pipeline & New Product Intelligence, Evaluate Pharma® (2024年11 月時点)をもとに医薬産業政策研究所にて作成(無 断転載禁止)。

でもL分類で売上があったが、その中でデンマー クは一番売上が低かった。その一方A分類では、 デンマークはアメリカに比肩するほどの売上を上 げていた一方、日本、スイス、イギリスは、この A分類での上位品目がなく、その売上がゼロとな っていた。

次にA分類での売上を mode of action (MOA) 別にみた (表5)。GLP-1 agonist と SGLT2 inhibitorで、全体の売上の7割近くを占めていた。GLP-1 agonist, SGLT2 inhibitor, human insulin analogues および DPP-IV inhibitor は、アメリカ、デ ンマーク、ドイツで独占していた(日本、イギリ ス、スイス以外の国もなし)。

4. まとめ、考察

4-1. 上位品目数動向

日本の医薬品創出企業の上位品目数が2017年を ピークに年々減り続け、2022年は統計を取り始め てから最少タイの7品目となった9)。しかしなが ら2023年はランクイン数が8品目となり、2016年 以来8年ぶりにランクイン数が増加した(図1)。 また再ランクインを含む新規ランクイン数が3品 目(図5)と、2015年からの集計で初めて、すべ ての国の中で最多となった。医薬品市場の拡大に より、少なくとも前年度の売上を超えないとラン クアップできないため、再ランクインであっても 同様にカウントしている。

前年アメリカが9品目の新規ランクインを果た しているため本年は新規ランクイン数が低下した ことによるなどの、一時的な現象である可能性も あるが、それでも減少傾向が続いていた日本のラ ンクイン品目数が増加に転じたこと、新規ランク イン数がトップになったこと(表2、図5)、さら にはバイオ品がランクインしたことなど、上位品 目調査では久しぶりの明るい話題となった。

前回の報告でも指摘9)したが、上位品目ヘラン クインするために新薬を生み出し続けることは必 要条件ではあるが、上位品目になるためにはその 薬剤の持つポテンシャル以外に、海外特にアメリ カでの展開力や販売力などが影響する。そのため 一概にグローバル承認数が多ければ上位品目の新 規ランクイン数が増えるとは限らない。ただ、創 薬大国のアメリカや欧州各国はグローバル承認を 近年でも維持し続けている一方で、日本のみが低 下している***。上述のようにラインクイン数の増 加に必要な要素はいろいろあるが、ランクイン数 を上げるためには、日本由来の NME 数を増やし ていくことが必要である。ランクインのためには、 創出することと、よく売れることの2条件が必要 だが、研究段階ではどんな薬が売れるか分からな いため、広く種をまくことでシーズ数を増やすこ とは重要だろう12、13)。

技術分類においては、2016年から8年ぶりに日 本のバイオ品が新規にランクインしたため、日本 由来のバイオ品の数が3品目となった(図8)。バ イオ品が増加したことについて、2016-2022年で グローバル承認された品目は6品目と欧州各国と 比べて遜色ないレベルであったい。その一方で、対 アメリカでは大きく引き離されていること、日本

¹¹⁾ 医薬産業政策研究所「日米欧 NME 承認品目の特許創出機関の国籍 - 日米欧における新規有効成分含有医薬品の承認品 目での比較 - 」政策研ニュース No.70 (2023年11月)

¹²⁾ R. L. Ohniwa et al. The effectiveness of Japanese public funding to generate emerging topics in life science and medicine, PLos One, Aug 17, 2023

¹³⁾ F. M. Scherer et al. Technology policy for a world of skew-distributed outcomes, Res. Policy, 29, 559-566, 2000

はバイオ品研究に対する出遅れなどが指摘されて いること、さらには、今年度売上上位品目におけ る101位以下を見ても日本由来のバイオ品目数が 多いとは言えない。これらのことから、増加を手 放しで喜べるものではなく、2023年の解析から見 られた現象が一過性のものなのか否かは今後の動 向を引き続きウォッチしていく必要がある。

欧州に目をやると、ドイツ、デンマークが右肩 上がりに上位ランクイン数を増やしていることか ら、コンスタントに売上につながる品目を創出し ている国といえる。技術分類で見た時に、デンマー クは特にバイオ品が強く薬効分類としてA分類に 偏っており特化型といえる。一方、ドイツは化成 品が多く、薬効分類に偏りがなくジェネラル型と いえる。これらの国のエコシステムを詳細に研究 することも、日本の創薬エコシステム構築の一助 になると考えられる。

4-2. 上位品目売上動向

3-2-1. でも記載したように、2023年の医薬品 市場は1兆5.996億ドル前年から8.1%増と、医薬品 市場は2023年度も堅調な伸びを示した。上位品目 の全体に占める割合も継続的に増え続け2023年度 は全体の4割弱に達し、それに伴い第100位の売上 も上昇し、22億ドル以上の売上がないと上位100品 目に名を連ねることはできなくなり、ランクイン のハードルがますます上がった。また、図10にみ られるように、イノベーションの成果が少数のト ップ製品に集中する傾向があるという Power law が医薬品の売上においても成立しており13、14)、大 きなアンメット・ニーズを有効に満たす高い革新 性のある新薬創製、特許保護等を活用した先行優 位性の発揮、上市市場の拡大の累積的な効果、適 用疾患の拡大、供給における規模の経済、新薬の 改良努力などが相乗的に機能して、少数の大ヒッ ト薬に使用が集中することにより新薬市場の大き な部分(上位20品目で100品目の売上の約5割)を

供給する形になっていた。

上位品目の売上に占める国籍別割合では、日本 は4.8%と、品目数の占める割合8% (=8品目) を下回っていた。一方上位品目に占める割合は、 ドイツは16.4%、デンマークは11.8%で、品目数に 占める割合より高かった(図12)。ATC分類A(消 化管と代謝作用)では、アメリカ、ドイツ、デン マークの売上が大きい一方、日本、スイス、イギ リスはゼロであった。L分類では、アメリカ、ド イツの売上は高いが、それ以外の国では大差なか った(表4)。これらのことから、近年売上比率上 昇の著しいA分類、とりわけダイアベティス治療 薬と抗肥満薬の有無が、国籍別割合に影響してい た可能性が高い。

A分類において、今回売上上位に上がっている 品目のうちGLP-1 agonist やSGLT2 inhibitorの基 本特許出願年は2000年代中頃から2010年代半ばで あった。肥満に関しては、アメリカでは2000年代 前半ですでに20歳以上のBMI30以上の割合は男女 ともに25%を超えており15、2023年時点で30%を 超え、その増加に歯止めがかからず、深刻な社会 問題となっている160。欧州各国でもアメリカほど ではないが肥満は社会問題化しているため抗肥満 薬への社会的要請が高かったように思われる。ア メリカドクトカゲの唾液成分の医薬品への適用か ら始まったインクレチン類似薬開発競争の中で、 アメリカとデンマークがその長時間作動型で強薬 効を示す薬剤の開発に成功し、一歩抜け出す形で 現在に至っていると推察される。

一方日本の状況について、肥満率は欧米ほど高 くなく、それほど社会問題化していなかった。今 でもそうであるが、当時も日本の創薬研究の主体 は日本にHQのある製薬メーカーであり、そのた めに肥満治療薬開発の優先順位はあまり高くなら なかった可能性がある。また、2010年前後から新 薬開発難易度の上昇、ジェネリック市場の形成、 バイオ技術の導入などから、国内製薬メーカーの

¹⁴⁾ H. G. Grabowski et al. Returns of R & D on new drug introductions in the 1980s, J. Health Econ., 13, 383-406, 1994

¹⁵⁾ 日本肥満学会「肥満症治療ガイドライン2022」2022年 一般社団法人日本肥満学会

¹⁶⁾ CDC HP: https://www.cdc.gov/obesity/index.html

創薬トレンドとして、ダイアベティスなどの大規 模国際共同治験を必要とし多大な開発および販売 コストを要するような疾患から、患者層を絞って 早く臨床試験結果が出るような癌や希少疾患など にシフトしていった^{17、18)}。そのため日本では抗肥 満薬が適応するような疾患に対する治療薬の開発 が欧米大手に比べて後手に回った可能性が考えら れる。実際に、2013年以降に承認された日本由来 のL分類におけるグローバル NME 品は多数創出 している一方、ダイアベティス治療薬を含むA領 域の承認品目数は15品と、他の薬効分類と比べて 少なくはないが、ローカル品の割合が非常に高く なっているという特徴がある(未公開データ)。そ の中にはSGLT2 inhibitorやDPPIV inhibitorなど も含まれているが、付加価値を見出せない結果と して、大規模国際治験は回避していたように見え る。

最後に

多数の魅力ある製品を作り出す根源は地道な基 礎研究の積み重ねとその実装であり、近年日本ア カデミアの存在感低下や、産学官の創薬に対する 意識のギャップなどから成果が生かされないこと が指摘されている19、20)。特許出願時の研究が上位 品目として開花するまでには15年以上の年月が必 要であるが、今から15年後のトレンドを予測する ことは不可能である。サイエンスの進展等に不確 実性が高い中で今後のイノベーションの機会を効 果的に新薬創製に活かすためには、研究助成の評 価は事前にではなく、うまくいった少数について 事後的に評価すればよい13)。そのような観点から の基礎研究力強化とその成果の創薬応用への施策 にも期待したい。

¹⁷⁾ 小原久美子「日本製薬企業の新たなビジネスモデル構想と組織変革のリーダーシップ」日本経営学会誌【経営学論集第 86集】(33)-1-(33)-9 2016年7月

¹⁸⁾ 国内大手製薬メーカー各社プレスリリース参照

¹⁹⁾ 医薬産業政策研究所「研究力から見た日本のアカデミアの現状」政策研ニュース No.71 (2024年3月)

²⁰⁾ 医薬産業政策研究所「日米欧創薬におけるサイエンスの貢献:特許と論文のマッチトデータからの示唆」政策研ニュー ス No.71 (2024年3月)