Implementation of ICH Q8, Q9, Q10

Pharmaceutical Quality System (PQS)

International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use

Structure of this session

- Introductory Presentation for PQS Break out Session (10 mins)
 - Learning Objectives
 - Key Messages
- Break-out into sub groups (70 mins)
 - Training/Discussion
 - Feedback on barriers to implementation
 - Feedback on issues where further clarification is required
- Feedback from each sub-group (40 mins)

Learning Objectives

- To review the key aspects of ICH Q10
- To understand the role and responsibilities of senior management
- To determine the practical application of ICH Q10 throughout the product lifecycle
 - New products
 - Legacy products
- To demonstrate how Continual Improvement can be used to improve both product quality and the PQS itself

Key Message: What is ICH Q10?

- ICH Q10 is a guideline on the essential elements of a PQS throughout the product life cycle
- ICH Q10 complements Q8 and Q9
 - ICH Q8 strengthens the link between development and manufacturing
 - ICH Q9 as an enabler of the PQS
- Implementation of PQS should provide enhanced assurance of product quality
- GMP is applicable to the Manufacturing part of the life cycle
 - Manufacturing of Investigational (medicinal) Product
 - Manufacturing of commercial products

Key Message: What is ICH Q10?

- A ICH Q10 type PQS reinforces/introduces some elements e.g.
 - Link manufacturing and development (incl. feedback)
 - Continual improvement
 - Products
 - Processes
 - PQS itself
 - Role and Responsibilities of Senior Management
 - Quality Risk Management and Knowledge Management
 - Product Lifecycle
 - Development through to Discontinuation
 - Management of outsourcing and purchasing material

Key messages

- Building quality into the product during development is fundamental
- ICH Q10 is a harmonised model of a PQS based on ISO Quality Management Systems (ISO 9000 series) which reinforces GMP and introduces some elements beyond GMP
- No intent to create new regulatory expectations
- Applies to e.g.
 - Drug Substance (small molecule & biotech)
 - Drug Product
 - Enhanced and Traditionally Developed Products

Key Messages: Knowledge Management and PQS

- The company should capture and use knowledge gained during development and manufacturing using a systematic approach
 - For continual improvement of the current products as well as future products
 - Each company should consider how this is achieved
- Examples
 - QTPP may evolve during lifecycle during development and commercial manufacture - as new knowledge is gained
 - The Control Strategy is refined during product transfer and commercial manufacturing
 - Use of prior knowledge of similar products at the manufacturing site

Breakout C: Pharmaceutical Quality System

Key Message: The PQS should be fit for purpose

- Applied in a structured and consistent manner that is appropriate and proportionate to each of the product lifecycle stages
- Implementation of PQS/Q10 type take into account the size and complexity of the company's activities (incl. products)
- The vision, objectives, design and the implementation should be pragmatic, clear and therefore understood
 - The PQS must be linked to real practices and integrated into daily work

Breakout C: Pharmaceutical Quality System

Different Types of Products

At Different Stages of Product Lifecycle

All need 'relevant' supporting processes

Implementation of ICH Q8, Q9, Q10

PQS Breakout Sub-Group Work

International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use

Breakout C: Pharmaceutical Quality System

Role and Responsibilities of Senior Management

- The decision to have enhanced development approaches (QbD) reinforces the need for a strong link between quality systems in development and manufacturing
- Senior management <u>demonstrates</u> commitment to the PQS by :
 - Granting adequate resources to implement, support and manage the PQS
 - Communicating the importance of the PQS
 - Ensuring strong interfaces between all relevant functions e.g.
 Development, manufacturing, Quality Unit (QA, QC, QP), engineering, supply chain and management of outsourced activities
 - Participation in the system through the conduct of management review (including process performance), product quality reviews and the PQS itself

Concept of Product Lifecycle Covered by PQS

- The development of a product is done under the framework of a PQS that is appropriate and proportionate e.g.
 - This PQS should be a general system (<u>encompassing all</u> <u>products</u>) such as organisation, quality policy, general documentation e.g. procedures, records, decisions, archiving
 - At a product specific level facilitates a comprehensive understanding of development that feeds into manufacturing

Breakout C: Pharmaceutical Quality System

PQS and Product Lifecycle Example from case study

- Using QRM as an enabler the PQS ensured
 - The Quality Risk Management processes were performed at key stages by involvement of the right technical disciplines
 - Selection of appropriate tools respecting the different aspects of the QRM process and appropriate training
 - Defined and documented processes as required in the PQS
 - Appropriate management review
- The knowledge gained during the development process was captured and shared with manufacturing

Breakout C: Pharmaceutical Quality System

Continual Improvement of the Product

Breakout C: Pharmaceutical Quality System

Continual Improvement of the PQS

Inputs

- PQS Processes: (e.g. Complaint, deviation, change management)
- Outsourced activities
- Self-assessment processes (audits, risk assessments, trending)
- External assessments (e.g. inspections)
- Emerging regulations
- Changes in business environment

Expanded

Body of Knowledge

Product ownership

Continual Improvement of Legacy Products

- ICH Q9 and Q10 can on their own bring advantages to legacy products
 - Traditionally developed, and extensive QC laboratory testing
- Most companies/sites manufacture legacy products and there are significant advantages to continually improve
 - Principles of ICH Q8, Q9, Q10 can be equally applied to these
 - To improve products and process understanding
 - To improve product quality and reduce waste (e.g. rejects)
 - To reduce process variability
 - To include RTRT to reduce lead times and QC testing
- There are challenges of introducing and new technologies (e.g. RTRT) to older products
 - More data = possible risk of uncovering problems/issues

Continual Improvement of Legacy Products

- However, industry must be encouraged to improve legacy products and processes
 - No sense to stay working with old technology and ways of working
 - PQS has to be able to deal with the knowledge gained from Continual Improvement of legacy products
- Industry can work with regulators to consider and corntol the risks
 - The regulators will encourage and support companies who want to improve legacy products and processes
 - Dialogue will be welcomed

Topics to discuss (1)

- Is a PQS mandatory? Is ICH Q10 mandatory?
- What is the added value for a company in implementing an <u>ICH</u> <u>Q10 type</u> PQS across the life cycle?
- What modifications to a company's existing PQS is envisaged to meet ICH Q10 intentions?
- How can Q10 type PQS facilitate in handling an enhanced development approach?
- How might a PQS support continual improvement?
- What do you see as the top 3 'high risk' elements that are managed by a PQS?
- Are there any barriers to practical implementation of an ICH Q10 type PQS?

Topics to discuss (2)

- Which PQS elements do you think are most useful in a development site?
- Is it necessary to describe PQS elements in regulatory submission (Q-CTD)?
- What is important in a PQS at the global/corporate level and at the local/site level?
- What are the key elements to settle before designing a PQS ?

